Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Machine Learning Prediction Model to Predict Length of Stay of Patients Undergoing Hip or Knee Arthroplasties: Results from a High-Volume Single-Center Multivariate Analysis

Abstract

The growth of arthroplasty procedures requires innovative strategies to reduce inpatients’ hospital length of stay (LOS). This study aims to develop a machine learning prediction model that may aid in predicting LOS after hip or knee arthroplasties. Methods: A collection of all the clinical notes of patients who underwent elective primary or revision arthroplasty from 1 January 2019 to 31 December 2019 was performed. The hospitalization was classified as “short LOS” if it was less than or equal to 6 days and “long LOS” if it was greater than 7 days. Clinical data from pre-operative laboratory analysis, vital parameters, and demographic characteristics of patients were screened. Final data were used to train a logistic regression model with the aim of predicting short or long LOS. Results: The final dataset was composed of 1517 patients (795 “long LOS”, 722 “short LOS”, p = 0.3196) with a total of 1541 hospital admissions (729 “long LOS”, 812 “short LOS”, p < 0.001). The complete model had a prediction efficacy of 78.99% (AUC 0.7899). Conclusions: Machine learning may facilitate day-by-day clinical practice determination of which patients are suitable for a shorter LOS and which for a longer LOS, in which a cautious approach could be recommended.